skip to main content


Search for: All records

Creators/Authors contains: "Sánchez, Pablo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Strong purifying selection is considered a major evolutionary force behind small microbial genomes in the resource-poor photic ocean. However, very little is currently known about how the size of prokaryotic genomes evolves in the global ocean and whether patterns reflect shifts in resource availability in the epipelagic and relatively stable deep-sea environmental conditions. Using 364 marine microbial metagenomes, we investigate how the average genome size of uncultured planktonic prokaryotes varies across the tropical and polar oceans to the hadal realm. We find that genome size is highest in the perennially cold polar ocean, reflecting elongation of coding genes and gene dosage effects due to duplications in the interior ocean microbiome. Moreover, the rate of change in genome size due to temperature is 16-fold higher than with depth up to 200 m. Our results demonstrate how environmental factors can influence marine microbial genome size selection and ecological strategies of the microbiome. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract Natural microbial communities are phylogenetically and metabolically diverse. In addition to underexplored organismal groups 1 , this diversity encompasses a rich discovery potential for ecologically and biotechnologically relevant enzymes and biochemical compounds 2,3 . However, studying this diversity to identify genomic pathways for the synthesis of such compounds 4 and assigning them to their respective hosts remains challenging. The biosynthetic potential of microorganisms in the open ocean remains largely uncharted owing to limitations in the analysis of genome-resolved data at the global scale. Here we investigated the diversity and novelty of biosynthetic gene clusters in the ocean by integrating around 10,000 microbial genomes from cultivated and single cells with more than 25,000 newly reconstructed draft genomes from more than 1,000 seawater samples. These efforts revealed approximately 40,000 putative mostly new biosynthetic gene clusters, several of which were found in previously unsuspected phylogenetic groups. Among these groups, we identified a lineage rich in biosynthetic gene clusters (‘ Candidatus Eudoremicrobiaceae’) that belongs to an uncultivated bacterial phylum and includes some of the most biosynthetically diverse microorganisms in this environment. From these, we characterized the phospeptin and pythonamide pathways, revealing cases of unusual bioactive compound structure and enzymology, respectively. Together, this research demonstrates how microbiomics-driven strategies can enable the investigation of previously undescribed enzymes and natural products in underexplored microbial groups and environments. 
    more » « less
  3. Abstract

    Mercury (Hg) methylation genes (hgcAB) mediate the formation of the toxic methylmercury and have been identified from diverse environments, including freshwater and marine ecosystems, Arctic permafrost, forest and paddy soils, coal‐ash amended sediments, chlor‐alkali plants discharges and geothermal springs. Here we present the first attempt at a standardized protocol for the detection, identification and quantification ofhgcgenes from metagenomes. Our Hg‐cycling microorganisms in aquatic and terrestrial ecosystems (Hg‐MATE) database, a catalogue ofhgcgenes, provides the most accurate information to date on the taxonomic identity and functional/metabolic attributes of microorganisms responsible for Hg methylation in the environment. Furthermore, we introduce “marky‐coco”, a ready‐to‐use bioinformatic pipeline based on de novo single‐metagenome assembly, for easy and accurate characterization ofhgcgenes from environmental samples. We compared the recovery ofhgcgenes from environmental metagenomes using the marky‐coco pipeline with an approach based on coassembly of multiple metagenomes. Our data show similar efficiency in both approaches for most environments except those with high diversity (i.e., paddy soils) for which a coassembly approach was preferred. Finally, we discuss the definition of truehgcgenes and methods to normalizehgcgene counts from metagenomes.

     
    more » « less